Loading...

Bits and BANGS 

Very, very small is beautiful — and controversial

Thursday, Feb 27 2003
Comments
Illustration by Dana Collins

NO LESS A SOURCE THAN PICASSO OPINED THAT van Gogh was a man to be deeply envied; with his seminal painting of a pair of old boots the lobeless Dutch artist had discovered a new kind of subject — the utterly mundane. Scientists also long to discover new domains of experience. Physicists, for example, look with envy on Heike Kamerlingh Onnes, the Dutch scientist who first liquefied helium, thereby opening up the realm of low-temperature physics — an astonishing region of unexpected exotica, including superfluids that defy gravity and superconductors that defy the normal laws of resistance to allow the flow of almost unlimited electric current. Percy Bridgman, another pioneer, found a way to generate high pressures, leading the charge into the kingdom of barometric intensity. In 1959, Richard Feynman suggested a further field for exploration — the "staggeringly small."

In a now-legendary talk at Caltech, Feynman asked, "Why cannot we write the entire 24 volumes of the Encyclopaedia Britannica on the head of a pin?" What would happen, he wanted to know, "if we could arrange the atoms one by one the way we want them?" In the 1950s, atomic engineering sounded like science fiction, but, as Feynman pointed out, there is nothing in the laws of physics to prevent such manipulation. Forty years later, scientists are finally realizing Feynman's vision, and at a recent UCLA conference, researchers came together to discuss the latest advances and future scenarios for the emerging fields of nanoscale science and engineering.

A nanometer is a billionth of a meter, the scale of atoms themselves. (One nanometer is about the width of five hydrogen atoms.) By maneuvering at this scale, we can in theory make anything that is physically possible. And visions of what might be possible were not in short supply at the UCLA conference, subtitled "Converging Technologies for Improving Human Performance." Speakers enthused about nanoscale robots and new types of computer chips with the power to emulate the human brain; they spoke about neuromorphic engineering and computer systems that would interface with individual neurons to restore sight and hearing. In addition, we heard about neuromorphic prostheses that, jacked into the brain, would enable control of robot limbs (and even autonomous robots) through thought alone.

Related Stories

  • Dorkiest Death Threat Ever? Harvard Crimson Pulls Story After Threat from UCLA Fellow

    The storied Harvard Crimson newspaper pulled an article off its website after the author allegedly received an death threat from a UCLA fellow over the piece. The man identified as Peera Hemarajata, a UCLA Medical and Public Health Laboratory microbiology fellow, reportedly tweeted that "I swear that if I saw this...
  • Poor Losers

    In one recent year 8,000 legs, feet and toes had to be amputated, doctors say, to save the lives of diabetic Californians. But if you live in Beverly Hills or Malibu, you were far less likely to be one of these folks, even if you have diabetes. If you live...
  • UCLA Beats USC! 2

    UCLA might not outrank USC when it comes to football, but the Westwood school pulled ahead this year in the most-watched academic rankings in the United States. U.S. News & World Report's annual "Best Colleges" list of national universities, released today, puts UCLA at number 23 in a tie with...
  • On-Campus Attack 2

    It has been a rough week at UCLA. First 20 million gallons of drinking water flooded campus Tuesday, damaging Pauley Pavilion, athletic facilities and some offices. See also: UCLA Flooded by Tons of Water (PHOTOS) Now an unheard of nighttime attack has been reported on campus. A woman who attends UCLA...
  • Water Disaster 5

    The L.A. Department of Water and Power said that gusher of a "trunk line" break that caused massive flooding on the UCLA campus cost Angelenos 20 million gallons of perfectly good drinking water. See also: UCLA Flooded by Tons of Water (PHOTOS) What's perhaps more amazing than that figure is that...

With a rapidly aging population, improvements in health care were high on the agenda, and a slew of speakers described nanosensors that would medically interrogate individual cells. These would work in concert with nanoscale regulators delivering minutely calibrated drug doses on a cell-by-cell basis. Also said to be in the pipeline were replacement organs, genomically targeted drugs, heightened sensory powers, improved mental function and extended life spans. So fundamental is the technological shift now taking place, said conference organizer Mihail Roco, that we are entering a new Renaissance. Roco compared nanoengineers to Leonardo da Vinci: Where da Vinci imagined helicopters and submarines, Roco said, so nanotech visionaries are calling into being hitherto unthinkable tools and machines.

Under the rubric of nano, vast arenas of science ultimately come together, and convergence was the big theme at UCLA. In particular, the convergence at the nanoscale of genetics, information systems and cognition. Nano-Bio-Info-Cogno. NBIC was the official conference name and the acronym on everyone's lips. Participants varied in how they chose to pronounce this awkward quartet: For some it was EN-Bik, for others NIB-bik. Neither exactly flows off the tongue, and someone suggested the syllabically less challenged term BANG instead, standing for Bits, Atoms, Neurons and Genes.

Whatever you call it, it's big. In fiscal year 2003, the federal government alone will spend over $700 million on nanoscience and nanotech research. As senior adviser to the National Science Foundation, Roco is the chief architect of the feds' National Nanotech Initiative (NNI). Under his coordination, federal expenditure in research has expanded sixfold over the past five years. Both the National Science Foundation and NASA have been investing heavily, with at least seven national NNI centers of excellence now being established, including the NASA-funded Institute for Cell Mimetic Space Exploration at UCLA. The university is also home to the just-established California Nano-Systems Institute, born of a $100 million state grant from Gray Davis. With Davis' backing, California advocates are hoping the state will become a dominating force in nanotech — which, according to Roco, will soon be the driving engine of the global economy.

FOUR DECADES AGO, FEYNMAN IMAGINED MICROscopic machines and offered a prize of $1,000 to the first person to construct a motor that would fit into a cube one-sixty-fourth of an inch per side. Feynman set the goal too low: An engineer claimed the money the very next year. But at the UCLA-NBIC conference, one presenter showed slides of a molecular-scale motor fashioned around a nanotube of carbon atoms. More astounding was a molecular version of a rotary motor, a true microscopic marvel. Feynman actually offered two prizes; the second was for the first person to write a page of text at one-twenty-five-thousandth of the regular scale, small enough to print the entire Encyclopaedia Britannica on the head of a pin. That too has long since been claimed, when, in 1985, Stanford graduate student Thomas Newman reproduced the opening page of Dickens' novel A Tale of Two Cities in an area measuring a 60th of a millimeter per side, or 20 times smaller than the human eye can see. At NBIC, we learned about a German scientist who has etched the title of Herman Hesse's The Glass Bead Game using individual atoms.

As our demands for computer power increase, logic circuitry also must approach the nanoscale. Convergence between bits and atoms is inevitable. At the State University of New York in Stony Brook, researchers have been developing extremely high-density single-electron switching arrays, which they say will soon make possible their "final goal" of "placing a hardware analog of the mammalian cerebral cortex on a 10cm-by-10cm silicon area." In other words, a mind on a chip. And at Caltech's Winfree Laboratory, researchers are attempting to construct computational devices from minute pieces of DNA. Many NBIC participants acknowledged that nature has been building nanoscale devices for several billion years — rather than reinventing the wheel, why not harness existing technology?

Not everyone is pleased about these impending nano convergences. To coincide with the UCLA conference, the ETC Group, a Canada-based organization devoted to conservation and sustainable development, released a communiqué titled "The Little BANG." "When the known world is reduced literally to atoms and molecules made up of chemical elements," the group declares, "the differences between life and non-life — between biology and art — cease to exist." ETC argues that the convergence of technologies at the nanoscale will lead to new technocracies in which Southern nations will inevitably lose out to Northern ones. This communiqué follows a much longer report ETC released last month, called "The Big Down," which the group bills as "the first comprehensive and critical analysis of nanotechnology for civil society and policy makers." Under its former incarnation as the Rural Advancement Foundation International (RAFI), ETC has played a major part in the global fight against genetically modified food, and its members are clearly hoping they can wage a similar campaign against nanotechnology. Jim Thomas, an ETC program manager attending the NBIC event, noted that nanotech (which the group perversely insists on calling atomtech) will attract even more controversy than biotech. ETC's latest communiqué declares bluntly: "The Big Bang theory is about the origins of the universe. The Little BANG Theory could be about the end of nature as we know it."

At NBIC, champions and opponents alike moved quickly into overdrive. Whether for good or bad, each side agreed that life as we know it will never be the same.

Related Content